Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Gene ; 914: 148313, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38447681

RESUMEN

Adenosine kinase deficiency (OMIM #614300) is a type of inborn errors of metabolism with multiorgan symptoms primarily neurological disorders, hepatic impairment, global developmental delay, and mild dysmorphism. The genetic causes of adenosine kinase deficiency are homozygous or compound heterozygous loss-of-function variants of ADK. To date, fewer than 25 cases of adenosine kinase deficiency have been reported worldwide and none have been reported in China. In this research, trio whole-exome sequencing (Trio-WES) identified a novel homozygous ADK (NM_001123.4) out-of-frame deletion, c.518_519delCA (p.Thr173Serfs*15), in a Chinese patient with rare phenotypes of sepsis, metabolites disruption and neutrophil dysfunction. This variant was dysfunctional, with marked reduction of ADK level in both the patient's peripheral blood and cells transfected with the corresponding variant. Additionally, metabolomics detected by high-throughput mass spectrometry showed disturbances in the methionine (Met) and energy pathway. RNA sequencing (RNA-seq) of the patient's peripheral blood suggested a defective anti-inflammatory response characterized by impaired neutrophil activation, migration, and degranulation, which might be the primary cause for the sepsis. To our knowledge, we identified the first Chinese patient of adenosine kinase deficiency with a novel homozygous out-of-frame deletion in ADK causing multiorgan disorders, metabolites disruption, rare phenotypes of sepsis, and neutrophil dysfunction. Our findings broaden the genetic spectrum and pathogenic mechanisms of adenosine kinase deficiency.

2.
Epilepsy Res ; 200: 107303, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306957

RESUMEN

PURPOSE: Temporal lobe epilepsy (TLE) has a high risk of developing drug resistant and cognitive comorbidities. Adenosine has potential anticonvulsant effects as an inhibitory neurotransmitter, but drugs targeting its receptors and metabolic enzyme has inevitable side effects. Therefore, we investigated adenosine augmentation therapy for seizure control and cognitive comorbidities in TLE animals. METHODS: Using lentiviral vectors coexpressing miRNA inhibiting the expression of adenosine kinase (ADK), we produced ADK--rMSC (ADK knockdown rat mesenchymal stem cell). ADK--rMSC and LV-con-rMSC (rMSC transduced by randomized scrambled control sequence) were transplanted into the hippocampus of TLE rat respectively. ADK-+DPCPX group was transplanted with ADK--rMSC and intraperitoneally injected with DPCPX (adenosine A1 receptor antagonist). Seizure behavior, EEG, CA1 pyramidal neuron apoptosis, and behavior in Morris water maze and novel object recognition test were studied RESULTS: Adenosine concentration in the supernatants of 105 ADK--rMSCs was 13.8 ng/ml but not detectable in LV-con-rMSCs. ADK--rMSC (n = 11) transplantation decreased spontaneous recurrent seizure (SRS) duration compared to LV-con-rMSC (n = 11, P < 0.05). CA1 neuron apoptosis was decreased in ADK--rMSC (n = 3, P < 0.05). ADK--rMSC (n = 11) improved the Morris water maze performance of TLE rats compared to LV-con-rMSC (n = 11, escape latency, P < 0.01; entries in target quadrant, P < 0.05). The effect of ADK--rMSC on neuron apoptosis and spatial memory were counteracted by DPCPX. However, ADK--rMSC didn't improve the performance in novel object recognition test. CONCLUSION: Adenosine augmentation-based ADK--rMSC transplantation is a promising therapeutic candidate for TLE and related cognitive comorbidities.


Asunto(s)
Disfunción Cognitiva , Epilepsia del Lóbulo Temporal , Trasplante de Células Madre Mesenquimatosas , Ratas , Animales , Epilepsia del Lóbulo Temporal/terapia , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Adenosina/metabolismo , Convulsiones/terapia , Disfunción Cognitiva/genética , Disfunción Cognitiva/terapia
3.
Bull Exp Biol Med ; 176(1): 91-95, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38085399

RESUMEN

The level of mRNA of the long (L) and short (S) isoforms of adenosine kinase (ADK) was analyzed in patients with colorectal cancer (CRC). ADK is required to convert adenosine (ADO) to AMP. It was shown that tumor and normal colon tissues (n=13) do not differ in the level of ADK-S and ADK-L mRNA. At the same time, the level of ADK-S mRNA (tumor: p=0.0214, normal: p=0.005) in the colon tissue was lower than in the blood of CRC patients (n=20), and the level of ADK-L mRNA (tumor: p=0.007, normal: p=0.024), on the contrary, was higher. A negative correlation was found between the level of ADK-S mRNA and the level of A2aR mRNA in both tumor and normal tissues (p=0.018 and p=0.0014, respectively). In the tumor tissue, a positive correlation was shown between ADK-L and CD73 mRNA levels (p=0.017). The obtained data indicate the association ADK with the expression of CD39/CD73/A2aR in CRC patients. In this regard, the effect of recombinant ADK on the expression of CD39 and CD73 ectonucleotidase by T cells in vitro was analyzed. In a culture of peripheral blood mononuclear cells isolated from the blood of 5 healthy donors, ADK did not abolish the inhibitory effect on the expression of CD39 and CD73 by CD8+T cells in the presence of a high concentration of ATP (a source for ADO). Effects on CD39+CD4+, CD73+CD4+T cells and CD39+ Treg cells were also not found.


Asunto(s)
Adenosina Quinasa , Neoplasias Colorrectales , Humanos , Leucocitos Mononucleares/metabolismo , Adenosina , ARN Mensajero/genética , Neoplasias Colorrectales/genética , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Adenosina Trifosfato/metabolismo
4.
Eur J Med Chem ; 262: 115885, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871407

RESUMEN

The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Humanos , Femenino , Embarazo , Toxoplasmosis/tratamiento farmacológico , Atovacuona/metabolismo , Atovacuona/farmacología , Atovacuona/uso terapéutico , Trimetoprim/farmacología , Mamíferos
5.
Acta Naturae ; 15(2): 42-49, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538807

RESUMEN

Tumor cells have the capacity to create an adenosine-rich immunosuppressive environment, which can interfere with antitumor immunotherapy. Approaches are currently being developed with a view to suppressing the production of adenosine or its signals. Such approaches include the use of antibodies to inhibit CD39, CD73, and adenosine-receptor antagonists. However, the abundance of enzymatic pathways that control the ATP-adenosine balance, as well as the still poorly understood intracellular adenosine regulation, makes the hoped-for success unlikely. In the present study, the enzyme adenosine kinase (ADK) needed to convert adenosine to adenosine monophosphate, thereby regulating its levels, was investigated. To do so, peripheral blood samples from patients with colorectal cancer (CRC) (n = 31) were collected with blood samples from healthy donors (n = 17) used as controls. ADK gene expression levels and those of its long (ADK-L) and short (ADK-S) isoforms were measured. The relationship between the levels of ADK gene expression and that of CD39, CD73, and A2aR genes was analyzed. It turned out that in the group of CRC patients (stages III-IV), the level of ADK-L mRNA was lower (p < 0.0011) when compared to that of the control. For the first time, an average correlation was found between the level of expression of CD39 and ADK-S (r = -0.468 at p = 0.043) and between CD73 and ADK-L (r = 0.518 at p = 0.0232) in CRC patients. Flow cytometry was used to assess the content of CD39/CD73-expressing CD8+, CD4+ and Treg lymphocytes, as well as their relationship with the level of ADK gene expression in CRC patients. But no significant correlations were found.

6.
Neuropathol Appl Neurobiol ; 49(4): e12926, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37483117

RESUMEN

AIMS: Mesial temporal lobe epilepsy without hippocampal sclerosis (no-HS MTLE) refers to those MTLE patients who have neither magnetic resonance imaging (MRI) lesions nor definite pathological evidence of hippocampal sclerosis. They usually have resistance to antiepileptic drugs, difficulties in precise seizure location and poor surgical outcomes. Adenosine is a neuroprotective neuromodulator that acts as a seizure terminator in the brain. The role of adenosine in no-HS MTLE is still unclear. Further research to explore the aetiology and pathogenesis of no-HS MTLE may help to find new therapeutic targets. METHODS: In surgically resected hippocampal specimens, we examined the maladaptive changes of the adenosine system of patients with no-HS MTLE. In order to better understand the dysregulation of the adenosine pathway in no-HS MTLE, we developed a rat model based on the induction of focal cortical lesions through a prenatal freeze injury. RESULTS: We first examined the adenosine system in no-HS MTLE patients who lack hippocampal neuronal loss and found ectopic expression of the astrocytic adenosine metabolising enzyme adenosine kinase (ADK) in hippocampal pyramidal neurons, as well as downregulation of neuronal A1 receptors (A1 Rs) in the hippocampus. In the no-HS MTLE model rats, the transition of ADK from neuronal expression to an adult pattern of glial expression in the hippocampus was significantly delayed. CONCLUSIONS: Ectopic expression of neuronal ADK might be a pathological hallmark of no-HS MTLE. Maladaptive changes in adenosine metabolism might be a novel target for therapeutic intervention in no-HS MTLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Esclerosis del Hipocampo , Animales , Ratas , Epilepsia del Lóbulo Temporal/patología , Adenosina Quinasa/metabolismo , Expresión Génica Ectópica , Convulsiones/patología , Imagen por Resonancia Magnética , Hipocampo/patología , Biomarcadores/metabolismo , Esclerosis/patología
7.
ACS Appl Mater Interfaces ; 15(25): 29876-29888, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37334941

RESUMEN

Resistance to traditional antiepileptic drugs is a major challenge in chronic epilepsy treatment. MicroRNA-based gene therapy is a promising alternative but has demonstrated limited efficacy due to poor blood-brain barrier permeability, cellular uptake, and targeting efficiency. Adenosine is an endogenous antiseizure agent deficient in the epileptic brain due to elevated adenosine kinase (ADK) activity in reactive A1 astrocytes. We designed a nucleic acid nanoantiepileptic drug (tFNA-ADKASO@AS1) based on a tetrahedral framework nucleic acid (tFNA), carrying an antisense oligonucleotide targeting ADK (ADKASO) and A1 astrocyte-targeted peptide (AS1). This tFNA-ADKASO@AS1 construct effectively reduced brain ADK, increased brain adenosine, mitigated aberrant mossy fiber sprouting, and reduced the recurrent spontaneous epileptic spike frequency in a mouse model of chronic temporal lobe epilepsy. Further, the treatment did not induce any neurotoxicity or major organ damage. This work provides proof-of-concept for a novel antiepileptic drug delivery strategy and for endogenous adenosine as a promising target for gene-based modulation.


Asunto(s)
Epilepsia , Ácidos Nucleicos , Ratones , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Astrocitos/metabolismo , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Ácidos Nucleicos/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Adenosina/farmacología
8.
Front Pharmacol ; 14: 1200491, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124214

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2022.908882.].

9.
CNS Neurosci Ther ; 29(9): 2597-2607, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37017409

RESUMEN

AIMS: Deep brain stimulation (DBS) of the anterior nucleus of the thalamus, is an effective therapy for patients with drug-resistant epilepsy, yet, its mechanism of action remains elusive. Adenosine kinase (ADK), a key negative regulator of adenosine, is a potential modulator of epileptogenesis. DBS has been shown to increase adenosine levels, which may suppress seizures via A1 receptors (A1 Rs). We investigated whether DBS could halt disease progression and the potential involvement of adenosine mechanisms. METHODS: Control group, SE (status epilepticus) group, SE-DBS group, and SE-sham-DBS group were included in this study. One week after a pilocarpine-induced status epilepticus, rats in the SE-DBS group were treated with DBS for 4 weeks. The rats were monitored by video-EEG. ADK and A1 Rs were tested with histochemistry and western blot, respectively. RESULTS: Compared with the SE group and SE-sham-DBS group, DBS could reduce the frequency of spontaneous recurrent seizures (SRS) and the number of interictal epileptic discharges. The DPCPX, an A1 R antagonist, reversed the effect of DBS on interictal epileptic discharges. In addition, DBS inhibited the overexpression of ADK and the downregulation of A1 Rs. CONCLUSION: The findings indicate that DBS can reduce SRS in epileptic rats via inhibition of ADK and activation of A1 Rs. A1 Rs might be a potential target of DBS for the treatment of epilepsy.


Asunto(s)
Adenosina Quinasa , Epilepsia , Receptor de Adenosina A1 , Convulsiones , Estado Epiléptico , Animales , Ratas , Receptor de Adenosina A1/metabolismo , Adenosina Quinasa/metabolismo , Epilepsia/inducido químicamente , Epilepsia/terapia , Convulsiones/inducido químicamente , Convulsiones/terapia , Estado Epiléptico/inducido químicamente , Estado Epiléptico/terapia , Pilocarpina , Masculino , Ratas Sprague-Dawley , Progresión de la Enfermedad
10.
Mol Neurobiol ; 60(8): 4396-4417, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37103687

RESUMEN

Focal cortical dysplasia (FCD), a common malformation of cortical development, is frequently associated with pharmacoresistant epilepsy in both children and adults. Adenosine is an inhibitory modulator of brain activity and a prospective anti-seizure agent with potential for clinical translation. Our previous results demonstrated that the major adenosine-metabolizing enzyme adenosine kinase (ADK) was upregulated in balloon cells (BCs) within FCD type IIB lesions, suggesting that dysfunction of the adenosine system is implicated in the pathophysiology of FCD. In our current study, we therefore performed a comprehensive analysis of adenosine signaling in surgically resected cortical specimens from patients with FCD type I and type II via immunohistochemistry and immunoblot analysis. Adenosine enzyme signaling was assessed by quantifying the levels of the key enzymes of adenosine metabolism, i.e., ADK, adenosine deaminase (ADA), and ecto-5'-nucleotidase (CD73). Adenosine receptor signaling was assessed by quantifying the levels of adenosine A2A receptor (A2AR) and putative downstream mediators of adenosine, namely, glutamate transporter-1 (GLT-1) and mammalian target of rapamycin (mTOR). Within lesions in FCD specimens, we found that the adenosine-metabolizing enzymes ADK and ADA, as well as the adenosine-producing enzyme CD73, were upregulated. We also observed an increase in A2AR density, as well as a decrease in GLT-1 levels and an increase in mTOR levels, in FCD specimens compared with control tissue. These results suggest that dysregulation of the adenosine system is a common pathologic feature of both FCD type I and type II. The adenosine system might therefore be a therapeutic target for the treatment of epilepsy associated with FCD.


Asunto(s)
Epilepsia , Displasia Cortical Focal , Malformaciones del Desarrollo Cortical de Grupo I , Malformaciones del Desarrollo Cortical , Niño , Adulto , Humanos , Epilepsia/patología , Malformaciones del Desarrollo Cortical de Grupo I/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
11.
Pathogens ; 12(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36678417

RESUMEN

Schistosomiasis is one of the most important human helminthiases worldwide. Praziquantel is the current treatment, and no vaccine is available until the present. Thus, the presented study aimed to evaluate the immunization effects with recombinant Schistosoma mansoni enzymes: Adenosine Kinase (AK) and Hypoxanthine-Guanine Phosphoribosyltransferase (HGPRT), as well as a MIX of the two enzymes. Female Balb/c mice were immunized in three doses, and 15 days after the last immunization, animals were infected with S. mansoni. Our results showed that the group MIX presented a reduction in the eggs in feces by 30.74% and 29%, respectively, in the adult worms. The groups AK, HGPRT and MIX could produce IgG1 antibodies, and the groups AK and MIX produced IgE antibodies anti-enzymes and anti-S. mansoni total proteins. The groups AK, HGPRT and MIX induced a reduction in the eosinophils in the peritoneal cavity. Besides, the group AK showed a decrease in the number of hepatic granulomas (41.81%) and the eggs present in the liver (42.30%). Therefore, it suggests that immunization with these enzymes can contribute to schistosomiasis control, as well as help to modulate experimental infection inducing a reduction of physiopathology in the disease.

12.
Neurochem Res ; 48(4): 1091-1099, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36244037

RESUMEN

Astrocytes play a dual role in the brain. On the one hand, they are active signaling partners of neurons and can for instance control synaptic transmission and its plasticity. On the other hand, they fulfill various homeostatic functions such as clearance of glutamate and K+ released from neurons. The latter is for instance important for limiting neuronal excitability. Therefore, an impairment or failure of glutamate and K+ clearance will lead to increased neuronal excitability, which could trigger or aggravate brain diseases such as epilepsy, in which neuronal hyperexcitability plays a role. Experimental data indicate that astrocytes could have such a causal role in epilepsy, but the role of astrocytes as initiators of epilepsy and the relevant mechanisms are under debate. In this overview, we will discuss the potential mechanisms with focus on K+ clearance, glutamate uptake and homoeostasis and related mechanisms, and the evidence for their causative role in epilepsy.


Asunto(s)
Astrocitos , Epilepsia , Humanos , Astrocitos/fisiología , Encéfalo , Transmisión Sináptica , Ácido Glutámico
13.
J Mol Cell Cardiol ; 174: 88-100, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36473288

RESUMEN

Pro-inflammatory and reparative macrophages are crucial in clearing necrotic myocardium and promoting cardiac repair after myocardial infarction (MI), respectively. Extracellular adenosine has been demonstrated to modulate macrophage polarization through adenosine receptors. However, the role of intracellular adenosine in macrophage polarization has not been explored and adenosine kinase (ADK) is a major enzyme regulating intracellular adenosine levels. Here, we aimed to elucidate the role of ADK in macrophage polarization and its subsequent impact on MI. We demonstrated that ADK was upregulated in bone marrow-derived macrophages (BMDMs) after IL-4 treatment and was highly expressed in the infarct area at day 7 post-MI, especially in macrophages. Compared with wild-type mice, myeloid-specific Adk knockout mice showed increased infarct size, limited myofibroblast differentiation, reduced collagen deposition and more severe cardiac dysfunction after MI, which was related to impaired reparative macrophage phenotype in MI tissue. We found that ADK deletion or inhibition significantly decreased the expression of reparative genes, such as Arg1, Ym1, Fizz1, and Cd206 in BMDMs after IL-4 treatment. The increased intracellular adenosine due to Adk deletion inhibited transmethylation reactions and decreased the trimethylation of H3K4 in BMDMs after IL-4 treatment. Mechanistically, we demonstrated that Adk deletion suppressed reparative macrophage phenotype through decreased IRF4 expression, which resulted from reduced levels of H3K4me3 on the Irf4 promotor. Together, our study reveals that ADK exerts a protective effect against MI by promoting reparative macrophage polarization through epigenetic mechanisms.


Asunto(s)
Adenosina Quinasa , Infarto del Miocardio , Ratones , Animales , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Interleucina-4/genética , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Fenotipo , Ratones Noqueados , Ratones Endogámicos C57BL
14.
Bone Rep ; 17: 101608, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35992507

RESUMEN

ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated by adenosine. The goal of this review is to build a conceptual model of the role of different components of this complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 receptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge regarding the individual components of the purinergic system into a conceptual framework of choreographed responses to physical forces.

15.
Front Pharmacol ; 13: 910535, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754505

RESUMEN

Adenosinergic activities are suggested to participate in SUDEP pathophysiology; this study aimed to evaluate the adenosine hypothesis of SUDEP and specifically the role of adenosine A2A receptor (A2AR) in the development of a SUDEP mouse model with relevant clinical features. Using a combined paradigm of intrahippocampal and intraperitoneal administration of kainic acid (KA), we developed a boosted-KA model of SUDEP in genetically modified adenosine kinase (ADK) knockdown (Adk+/-) mice, which has reduced ADK in the brain. Seizure activity was monitored using video-EEG methods, and in vivo recording of local field potential (LFP) was used to evaluate neuronal activity within the nucleus tractus solitarius (NTS). Our boosted-KA model of SUDEP was characterized by a delayed, postictal sudden death in epileptic mice. We demonstrated a higher incidence of SUDEP in Adk+/- mice (34.8%) vs. WTs (8.0%), and the ADK inhibitor, 5-Iodotubercidin, further increased SUDEP in Adk+/- mice (46.7%). We revealed that the NTS level of ADK was significantly increased in epileptic WTs, but not in epileptic Adk+/- mutants, while the A2AR level in NTS was increased in epileptic (WT and Adk+/-) mice vs. non-epileptic controls. The A2AR antagonist, SCH58261, significantly reduced SUDEP events in Adk+/- mice. LFP data showed that SCH58261 partially restored KA injection-induced suppression of gamma oscillation in the NTS of epileptic WT mice, whereas SCH58261 increased theta and beta oscillations in Adk+/- mutants after KA injection, albeit with no change in gamma oscillations. These LFP findings suggest that SCH58261 and KA induced changes in local neuronal activities in the NTS of epileptic mice. We revealed a crucial role for NTS A2AR in SUDEP pathophysiology suggesting A2AR as a potential therapeutic target for SUDEP risk prevention.

16.
Cell Rep ; 39(9): 110884, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649375

RESUMEN

Muscle regeneration is known to be defective under diabetic conditions. However, the underlying mechanisms remain less clear. Adult quiescent muscle satellite cells (MuSCs) from leptin-receptor-deficient (i.e., db/db) diabetic mice are defective in early activation in vivo, but not in culture, suggesting the involvement of pathogenic niche factors. Elevated extracellular adenosine (eAdo) and AMP (eAMP) are detected under diabetic conditions. eAdo and eAMP potently inhibit cell cycle re-entry of quiescent MuSCs and injury-induced muscle regeneration. Mechanistically, eAdo and eAMP engage the equilibrative Ado transporters (ENTs)-Ado kinase (ADK)-AMPK signaling axis in MuSCs to inhibit the mTORC1-dependent cell growth checkpoint. eAdo and eAMP also inhibit early activation of quiescent fibroadipogenic progenitors and human MuSCs by the same mechanism. Treatment of db/db diabetic mice with an ADK inhibitor partially rescues the activation defects of MuSCs in vivo. Thus, both ADK and ENTs represent potential therapeutic targets for restoring the regenerative functions of tissue stem cells in patients with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Adenosina , Animales , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos , Músculos
17.
Front Pharmacol ; 13: 908882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721189

RESUMEN

Methylation is an important mechanism contributing to cancer pathology. Methylation of tumor suppressor genes and oncogenes has been closely associated with tumor occurrence and development. New insights regarding the potential role of the adenosine receptor-independent pathway in the epigenetic modulation of DNA methylation offer the possibility of new interventional strategies for cancer therapy. Targeting DNA methylation of cancer-related genes is a promising therapeutic strategy; drugs like 5-Aza-2'-deoxycytidine (5-AZA-CdR, decitabine) effectively reverse DNA methylation and cancer cell growth. However, current anti-methylation (or methylation modifiers) are associated with severe side effects; thus, there is an urgent need for safer and more specific inhibitors of DNA methylation (or DNA methylation modifiers). The adenosine signaling pathway is reported to be involved in cancer pathology and participates in the development of tumors by altering DNA methylation. Most recently, an adenosine metabolic clearance enzyme, adenosine kinase (ADK), has been shown to influence methylation on tumor suppressor genes and tumor development and progression. This review article focuses on recent updates on ADK and its two isoforms, and its actions in adenosine receptor-independent pathways, including methylation modification and epigenetic changes in cancer pathology.

18.
Eur J Pharmacol ; 927: 175050, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35618039

RESUMEN

Pharmacological inhibition of adenosine kinase (ADK), the major route of myocardial adenosine metabolism, can elicit acute cardioprotection against ischemia-reperfusion (IR) by increasing adenosine signaling. Here, we identified a novel, extended effect of the ADK inhibitor, ABT-702, on cardiac ADK protein longevity and investigated its impact on sustained adenosinergic cardioprotection. We found that ABT-702 treatment significantly reduced cardiac ADK protein content in mice 24-72 h after administration (IP or oral). ABT-702 did not alter ADK mRNA levels, but strongly diminished (ADK-L) isoform protein content through a proteasome-dependent mechanism. Langendorff perfusion experiments revealed that hearts from ABT-702-treated mice maintain higher adenosine release long after ABT-702 tissue elimination, accompanied by increased basal coronary flow (CF) and robust tolerance to IR. Sustained cardioprotection by ABT-702 did not involve increased nitric oxide synthase expression, but was completely dependent upon increased adenosine release in the delayed phase (24 h), as indicated by the loss of cardioprotection and CF increase upon perfusion of adenosine deaminase or adenosine receptor antagonist, 8-phenyltheophylline. Importantly, blocking adenosine receptor activity with theophylline during ABT-702 administration prevented ADK degradation, preserved late cardiac ADK activity, diminished CF increase and abolished delayed cardioprotection, indicating that early adenosine receptor signaling induces late ADK degradation to elicit sustained adenosine release. Together, these results indicate that ABT-702 induces a distinct form of delayed cardioprotection mediated by adenosine receptor-dependent, proteasomal degradation of cardiac ADK and enhanced adenosine signaling in the late phase. These findings suggest ADK protein stability may be pharmacologically targeted to achieve sustained adenosinergic cardioprotection.


Asunto(s)
Adenosina Quinasa , Morfolinas , Pirimidinas , Adenosina Quinasa/antagonistas & inhibidores , Adenosina Quinasa/metabolismo , Animales , Cardiotónicos/farmacología , Corazón/diagnóstico por imagen , Ratones , Morfolinas/farmacología , Miocardio/enzimología , Proteolisis/efectos de los fármacos , Pirimidinas/farmacología , Receptores Purinérgicos P1/metabolismo
19.
J Dent Res ; 101(8): 921-930, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35360978

RESUMEN

Some oral squamous cell carcinomas (OSCCs) originate from preexisting oral potentially malignant disorders (OPMDs). Oral leukoplakia (OLK) is the most common and typical OPMD in the clinic, so treatment for it is essential to reduce OSCC incidence. Local chemotherapy is an option other than surgery considering the superficial site of OLK. However, there are no standardized drugs applied to OLK, and traditionally used chemotherapeutic drugs revealed limited efficacy for lack of adhesion. Hence, there is a growing demand to prepare new agents that combine mucoadhesion with an anti-OLK effect. Here, an isoguanosine-tannic acid (isoG-TA) supramolecular hydrogel via dynamic borate esters was successfully fabricated based on isoG and TA. Previously reported guanosine-TA (G-TA) hydrogel was also explored for an anti-OLK effect. Both gels not only exhibited ideal adhesive properties but also integrated anti-OLK activities in one system. In vitro cell viability indicated that isoG and TA inhibited the proliferation of dysplastic oral keratinocytes (DOKs). The in vivo OLK model evidence revealed that both gels showed potential to prevent OLK canceration. In addition, the probable anti-DOK mechanisms of isoG and TA were investigated. The results indicated that isoG could bind to adenosine kinase (ADK) and then affected the mammalian target of rapamycin (mTOR) pathway to inhibit DOK proliferation. TA could significantly and continuously reduce reactive oxygen species (ROS) in DOKs through its antioxidant effect. ROS plays an important role in the progression of cell cycle. We proved that the low level of ROS may inhibit DOK proliferation by inducing G0/G1 arrest in the cell cycle. Altogether, this study innovatively fabricated an isoG-TA hydrogel with ideal adhesion, and both isoG and TA showed in vitro inhibition of DOKs. Moreover, both isoG-TA and G-TA hydrogels possessed potential in delaying the malignant transformation of OLK, and the G-TA hydrogel showed a better statistical effect, providing an effective strategy for controlling OLK.


Asunto(s)
Neoplasias de Cabeza y Cuello , Nucleósidos , Humanos , Hidrogeles , Leucoplasia Bucal/tratamiento farmacológico , Leucoplasia Bucal/metabolismo , Leucoplasia Bucal/patología , Especies Reactivas de Oxígeno
20.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269653

RESUMEN

LiCl/pilocarpine status epilepticus (SE) induced in immature rats leads, after a latent period, to hippocampal hyperexcitability. The excitability may be influenced by adenosine, which exhibits anticonvulsant activity. The concentration of adenosine is regulated by adenosine kinase (ADK) present in two isoforms-ADK-L and ADK-S. The main goal of the study is to elucidate the changes in ADK isoform expression after LiCl/pilocarpine SE and whether potential changes, as well as inhibition of ADK by 5-iodotubercidin (5-ITU), may contribute to changes in hippocampal excitability during brain development. LiCl/pilocarpine SE was elicited in 12-day-old rats. Hippocampal excitability in immature rats was studied by the model of hippocampal afterdischarges (ADs), in which we demonstrated the potential inhibitory effect of 5-ITU. ADs demonstrated significantly decreased hippocampal excitability 3 days after SE induction, whereas significant hyperexcitability after 20 days compared to controls was shown. 5-ITU administration showed its inhibitory effect on the ADs in 32-day-old SE rats compared to SE rats without 5-ITU. Moreover, both ADK isoforms were examined in the immature rat hippocampus. The ADK-L isoform demonstrated significantly decreased expression in 12-day-old SE rats compared to the appropriate naïve rats, whereas increased ADK-S isoform expression was revealed. A decreasing ADK-L/-S ratio showed the declining dominance of ADK-L isoform during early brain development. LiCl/pilocarpine SE increased the excitability of the hippocampus 20 days after SE induction. The ADK inhibitor 5-ITU exhibited anticonvulsant activity at the same age. Age-related differences in hippocampal excitability after SE might correspond to the development of ADK isoform levels in the hippocampus.


Asunto(s)
Pilocarpina , Estado Epiléptico , Adenosina/metabolismo , Adenosina Quinasa/metabolismo , Animales , Anticonvulsivantes/farmacología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Pilocarpina/toxicidad , Isoformas de Proteínas/metabolismo , Ratas , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...